

Health care and Pharmaceutical

INDUSTRIAL BIOTECHNOLOGY

Curriculum

Program Outline:

Module 1: Fundamentals of Industrial Biotechnology

1.Introduction to Industrial Biotechnology: Understanding the basic concepts, history, and applications of industrial biotechnology.

- **2.Microbial Strain Development:** Learning about the development and optimization of microbial strains for industrial applications.
- **3.Biochemical Pathways:** Studying biochemical pathways and their relevance to industrial processes.
- **4.Chemical Reaction Kinetics:** Understanding the principles of chemical reaction kinetics and their application in bio processes.
- **5.Types of Reactors:** Exploring different types of reactors used in industrial biotechnology and their analysis

Module 2:Advanced Industrial Biotechnology

- **1.Advanced Bioprocess Engineering:** Exploring advanced topics in bioprocess engineering, including process design, scale-up, and optimization.
- **2.Metabolic Engineering:** Understanding metabolic engineering principles

to modify and optimize microbial metabolic pathways for industrial applications.

- **3.Synthetic Biology:** Learning about synthetic biology techniques to design and construct new biological parts, devices, and systems.
- **4.Genetic Engineering:** Gaining expertise in genetic engineering tools and techniques for modifying organisms to produce desired products.
- **5.Bioreactor Design and Operation:** Delving into advanced bioreactor design, operation, and control strategies for industrial-scale production.

Module 3: Practical Applications

- 1.Case Studies and Simulations: Analyzing real-world case studies and participating in simulations to understand the challenges and intricacies of industrial biotechnology applications.
- **2.Bioprocess Scale-Up:** Gaining hands-on experience in scaling up bioprocesses from lab-scale to industrial-scale production.
- **3.Bioreactor Operation and Control:** Implementing advanced bioreactor operation and control strategies to ensure process stability and product quality.
- **4.Downstream Processing Techniques:** Applying advanced downstream processing techniques for the purification, separation, and recovery of bioproducts.

Module 4: Capstone Project

- 1.Project Proposal: Developing a detailed proposal outlining the objectives, methodology, and expected outcomes of the project.
- **2.Research and Data Collection:** Conducting thorough research and collecting data relevant to the chosen topic.
- **3.Implementation:** Applying advanced industrial biotechnology knowledge and skills to execute the project.
- **4.Analysis and Evaluation:** Analyzing the results and evaluating the impact of the project on industrial biotechnology practices and outcomes.
- **5.Presentation and Defense:** Presenting the findings and defending the project in front of a panel of experts.

Elective Modules

Regulatory Affairs: Focus on the intricacies of regulatory submissions, interactions with regulatory agencies, and staying current with regulatory changes.

Clinical Data Management: Specialize in managing clinical trial data, ensuring data integrity, and utilizing advanced data analysis techniques.

Pharmacovigilance: Learn about the detection, assessment, understanding, and prevention of adverse effects or any other drug-related problems.

Quality Risk Management: Develop expertise in identifying, assessing, and managing risks related to drug development and ensuring continuous quality improvement.

Websites:

- https://chools.in/
 https://ramaqchools.com/
 https://www.choolsgroup.com/