

CONTENTS

- 1. Introduction to DataEngineering
- 2. Why Choose Chools?
- 3. Who Can Apply?
- 4. Program Overview
- 5. Objectives and Outcomes
- 6. Skills Learned
- 7. Job Positions and Opportunities
- 8. Key Industry Verticals
- 9.Program Outline
 - Stage 1: Fundamentals of Data Engineering
 - Stage 2: Advanced Analytical Tools
 - Stage 3: Practical Applications
 - Stage 4: Capstone Project
 - Elective Modules
- 10. Enrollment Information

INTRODUCTION TO DATA ENGINEERING

Hey there, future data engineer! Data engineering is the backbone of any data-driven organization, focusing on designing, building, and maintaining the systems that enable data collection, storage, processing, and analysis. Our comprehensive curriculum, hands-on projects, and expert guidance will prepare you to excel in this essential and growing field.

Numbers That Speak for Themselves:

- 10,000+ Successful Alumni: Join a network of impactful professionals.
- 95% Job Placement Rate: Secure your future with Chools' proven track record.
- 20+ Years of Excellence: Trust in a legacy of education and industry expertise.
- 200+ Industry Partnerships: Leverage our connections for real-world insights and opportunities.

What Sets Us Apart?

- **Expert Instructors**: Learn from industry veterans with hands-on experience.
- **Hybrid Learning Model**: Balance online flexibility with in-person engagement.
- Comprehensive Curriculum: Stay ahead with courses designed to meet market demands.
- Community and Networking: Be part of an active community of learners and professionals.

Who Can Apply?

Eligibility Criteria:

 Bachelor's degree in any subject, preferably with a STEM background.
 Good command of English.

Ideal Candidates:

 Professionals with at least 2 years of work experience looking to specialize in data engineering, graduates aiming to enhance their technical skills, and individuals with a basic understanding of object-oriented programming, SQL, databases, and Apache Spark.

Program Overview

The Data Engineer Professional Program at Chools provides an in-depth education in data engineering, combining theoretical knowledge with practical, hands-on experience. Our program is structured into four progressive stages, each building on the previous one to ensure a comprehensive understanding of the field.

Learning Mode:

- Hybrid Learning Model: Combines online learning with in-person sessions for flexibility and interactive engagement.
- Interactive Sessions: Includes live webinars, workshops, and Q&A forums with expert instructors and peers.
- Self-paced Learning: Access course materials anytime, allowing you to learn at your own pace.

Skills Learned

- Data Modeling: Designing and structuring data for efficient use.
- Data Warehousing: Building systems for storing and managing large data sets.
- Data Lakes: Implementing scalable data storage solutions.
- Data Pipelines: Automating data workflows and ETL processes.
- SQL: Advanced querying and database management.
- Apache Spark: Distributed data processing.
- **Big Data Technologies**: Hadoop, Spark for handling large data sets.
- Cloud Computing: Using cloud platforms for data engineering tasks.
- Data Ethics: Understanding responsible data use.
- **Data-driven Decision Making**: Supporting business strategies with data.

Job Positions and Opportunities

- Career Paths: Data Engineer, Data Architect, ETL Developer, Big Data Engineer, Data Warehouse Engineer, Cloud Data Engineer, Analytics Engineer.
- **Industry Demand**: High demand across sectors, competitive salaries, and growth opportunities.

Key Industry Verticals

Where Your Skills Are Needed: Finance, Healthcare, Retail,
Technology, Marketing, Manufacturing, Energy, Education,
Telecommunications, Logistics and Supply Chain, Government
and Public Services.

Program Objectives

- Master technical skills in data engineering.
- Design, build, and maintain data systems.
- Develop expertise in data modeling and warehousing.
- Create efficient data pipelines.
- Understand data ethics principles.
- Foster continuous learning.
- Promote teamwork and collaboration.
- Prepare for advanced data engineering roles.

Expected Outcomes

- Proficiency in data engineering tools and techniques.
- Practical experience through hands-on projects.
- Strong analytical and problem-solving abilities.
- Application of ethical data practices.
- Innovation in data infrastructure solutions.

PROGRAM OUTLINE

Stage 1: Fundamentals of Data Engineering

1. Introduction to Data Engineering

o Core principles, tools, and industry applications.

2. Basics of Data Modeling

o Designing data structures and schemas.

3. SQL for Data Management

o Database design, querying, and data management fundamentals.

4. Introduction to Data Warehousing

o Concepts, architecture, and applications.

Stage 2: Advanced Analytical Tools

5. Advanced SQL Techniques

o Complex queries, performance optimization.

6. Data Lakes and Big Data Technologies

o Implementing data lakes, using Hadoop and Spark.

7. Data Pipelines and ETL Processes

o Designing and automating data workflows.

8. Cloud Computing for Data Engineering

o Using cloud platfo<mark>rms for scalable data solutions.</mark>

Stage 3: Practical Applications

9. Data Cleaning and Preprocessing

o Techniques for ensuring data quality and reliability.

10. Exploratory Data Analysis (EDA)

o Analyzing data distributions, identifying patterns.

11. Advanced Data Integration Techniques

o Integrating data from multiple sources.

12. Real-time Data Processing

o Implementing real-time data workflows and stream processing.

Stage 4: Capstone Project

13. Integration of Learned Skills

o Apply tools and techniques to real-world problems, comprehensive solutions.

14. Advanced Machine Learning Algorithms

o Implementing and optimizing machine learning models.

15. Time Series Analysis

o Techniques for analyzing and forecasting temporal data.

16. Data Engineering for Al and ML

o Building infrastructure to support AI and ML applications.

PROGRAM OUTLINE

Elective Modules

17. Data Ethics and Privacy

o Ethical considerations, privacy laws, compliance strategies.

18. Big Data Security

o Securing data in big data environments.

19. Advanced Data Warehousing

o Optimizing data warehousing solutions.

20. Predictive Analytics

o Building and validating predictive models.

21. Data Mining

o Techniques for clustering, classification, and discovery.

22. Data-Driven Decision Making

o Using data to drive business strategies and decisions.

23. Data Engineering with Apache Spark

o Advanced data processing with Spark.

24. Cloud Data Engineering

o Building and manag<mark>ing data solutions on</mark> the cloud.

25. Data Engineering Project Management

o Leading data engineering projects, ensuring successful delivery.

Enrollment Now Open!

Take the first step towards a data-driven future. Join our Data Engineer Professional Program and become a certified data engineer with Chools.